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INTRODUCTION

Let E and F be topological vector lattices, and let H denote a linear
subspace of E. The Korovkin closure (or shadow) H: of H with respect to
some linear lattice homomorphism S: E -- F is the set of all x E E satisfying
the following condition:

For each net (Ti)iEI of positive linear operators, (Ti(x))iEI converges to
Sex) provided that limiEI Ti( Y) = S( y) for all y E H.

There are many sufficient conditions for an element x E E to belong to the
Korovkin closure H: (see, e.g., [1], [3], [4], [8], [12], [13], [14], [16]).
Although necessary conditions have been given for some particular vector
lattices [1], [2], [3], [4], [11]) exact descriptions of Korovkin closures are
rare the literature. It is the main intention of this note to fill this gap together
with a parallel publication (see [5]). In fact, we characterize H: for an
arbitrary topological vector lattice F.

In view ofthe applications, the operators Ti are often defined only on some
linear subspace Eo of E (e.g., E = F = ~([O, 1], S is the identity operator
and Eo is the space of all polynomials on [0, 1]). Our characterization also
carries over to this case. Replacing the nets of positive linear operators by
sequences we obtain sequential Korovkin closures. Under some rather general
assumptions sequential Korovkin closures are also characterized.

NOTATIONS AND DEFINITIONS

Throughout this note E will be a vector lattice and Eo, H will denote
linear subspaces of E such that He Eo. Furthermore, let F be a Hausdorff
topological vector latticel and let S : E -- F be a linear lattice homomorphism.
For each x E E, we set

1 See [71 for a definition of topological vector lattices.
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H"':= {YEH: Y ~ x},

H",:= {YEH: Y ~ x},

{f'" := {sup A: 0 =1= A C H"', A finite},

H", := {inf A: 0 =1= A C H"" A finite}.
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Note that H", and {f'" are downward and upward directed, respectively. An
element x E Eo is called (H, S)-affine iff H", =1= 0, H'" =1= 0 and limyEb S(y) =
S(x) = limyEQ• S(y). The subset of all (H, S)-affine elements in E; will be
denoted by ds(H). Given a class ff of linear operators from Eo into F the
Korovkin closure or shadow H[ of H with respect to ff and S is the set of all
x E Eo such that (Ti) Eff and limiEI Ti(y) = S(y) for all y E H implies
limiEI T;(x) = S(x). In this note only subclasses of the class & of all nets of
positive linear operators from Eo into F will be considered for ff.

The proof of the following lower estimate for H~ is only a slight modifica
tion of well-known arguments which have been repeatedly used by many
authors ([1], [3], [4], [5], [13]). Hence we omit the proof.

THEOREM 1. Each (H, S)-affine element 01 Eo is contained in H!f.

Before we prove the converse of Theorem 1 we give some examples

(1) (see (1], [2]) Let X be a topological space and let FC 't'(X) be a
Hausdorff topological vector lattice of real-valued functions on X. For a
linear subspace H of 't'(X) we define

H o := {fE 't'(X): HI =1= 0 and HI =1= 0}.

If S: 't'(X)~ F is the natural embedding and (Ti)iEI is a net of positive
linear operators from Ho into F converging to S on H, then EmiEI Ti(f) = I
for all (H, S)-affine functions I in H o . Thus we obtain Bauer's results if we
choose F = {fE IRx: I is bounded on each compact subset 01 X} endowed with
the topology of pointwise resp. locally uniform convergence, or if we set
F = 't'(X) endowed with the order topology.

(2) (see [3],) Let !-L be a Borel measure on a locally compact space X.
If F denotes the vector lattice of all equivalence classes of !-L-a.e. finite,
measurable functions on X with values in IR u {+ 00, - OCJ} (the equivalence
relation being ",,-a.e.-equality), then the topology of convergence in measure is
compatible with the linear structure of F and makes F a topological vector
lattice, which is not locally convex, in general. ForiE 't'(X) let S(f) EFbe the
equivalence class of I in F. Then S: 't'(X) ~ F is a linear lattice homomor
phism. Thus, by Theorem 1, if (Ti ) is a net of positive linear maps from
't'(X) into F satisfying limiEI Ti(h) = S(h) for all functions h of a subspace H of
't'(X) we have limiEI Ti(f) = S(f) for each (H, S)-affine function I in 't'(X).
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It will be shown in a forthcoming publication that (H, S)-affine elements
are easy to describe in many cases of practical interest. Here, however, we
shall go straight ahead to prove the converse of Theorem 1. The following
lemma is crucial for understanding the rest of this note:

LEMMA I. Let V be an order-complete vector lattice. If Q: H --+ V is a
positive linear mapping and if~o denotes the set ofall positive linear extensions
ofQonHo:={xEEo:Hx=F 0 =FHx}. Then

{L(f): L E ~o} = {v E V: sup Q(Hf) ~ V ~ inf Q(Hf)} for all fE Ho .

Proof The mapping Q: H o --+ V defined by Q(f) = inf Q(Hf) is sub
linear and -Q(-f) = sup Q(Hf) for each fE Ho . Hence, if L E ~o and
fE Ho we obtain

-Q(-f) = sup L(Hf) ~ L(f) ~ inf L(Hf) = Q(f).

Conversely, letf E Ho and suppose that v E V satisfies -Q(-f) ~ v ~ Q(f).
On the one-dimensional subspace !RfC Ho generated by fwe define a linear
operator T: !Rf --+ V by setting T(Af) = Av for all AE R From the inequality
v ~ Q(f) (resp. -v ~ Q(-f)) it follows that T(Af) ~ AQ(f) = Q(Af) for
all AE!R+ (resp. T(Af) ~ -AQ(-f) = Q(Af) for all AE !R+). Hence T(Af) ~
Q(Af) for all AE !R. By the Hahn-Banach theorem for linear mappings into
order-complete vector lattices there is a linear extension L: Ho --+ V of T
satisfying L(g) ~ Q(g) for all g E Ho . If g E Ho , g ~ 0, we deduce 0 :;:
Q(g) :;: L(g), hence L is positive. Moreover, since Q(h) = - Q(-h) for all
h E H, we must have L E ~o which completes the proof.

For completeness let us first mention the elementary converses ofTheorem I,
when E or F are order-complete (see (13]).

PROPOSITION 1. If F is order-complete and the topology of F is order
continuous, or if E is an order-complete topological vector lattice with order
continuous topology and S: E --+ F is continuous, then the following statements
are equivalent provided that H x =F 0 =F HX for each x E Eo:

(i) x is (H, S)-affine,

(ii) x E Hr:.
(iii) for each sequence (Tn) of positive linear operators from Eo into F

converging to S on H, we have limn->oo Tix) = S(x).

(iv) for each positive linear operator T: Eo--+F such that T/H = SIH,
we have T(x) = S(x).

Proof It remains to show that (iv) implies (i). First, let F be order-com
plete and suppose that the topology of F is order-continuous. By Lemma I,
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we obtain sup S(HX) = S(X) = inf S(Hx). Since S is a lattice homomorphism
and since the toplogy of F is order-continuous it follows that

S(x) 0= sup S(HX) = lim S(y) and S(x) = inf S(Hx) = liW S(.1'),
v yEqx . YEn x

which yields (i).
Suppose now that E is an order-complete topological vector lattice with

order-continuous topology and that S is continuous. If x E Eo and J denotes
the identity operator on E there is a positive linear operator T: Eo ->- E
such that T = I on Hand T(x) = inf H x by Lemma 1. Consequently,
SoT c= S on Hand So T(x) = S(inf Hx) = S(inf Hx) = lim"EH 8(.1').
Hence, if x satisfies condition (iv), we deduce S(x) = lim YEH S(y). Replacing
x by -x we have (i). x

Remark. In many applications neither E nor F will be order-complete
vector lattices. Thus, e.g., Proposition 1 does not include the results of
Scheffold [11] and Bauer [1], [2], since ~(X) (X compact or locally compact)
is not order-complete in general. Clearly, one can trivialize the problem
replacing the target space ~(X) of positive linear operators by an order
complete linear lattice G that contains ~(X). The outcome, however, is not
the desired equality between ds(H) and Hr, since there are by far more
positive linear operators from ~(X) into G but from ~(X) into itself (cf. [13]).

Let us now attack the hard case of non-order-complete vector lattices. Before
we formulate the main theorem, we need three lemmas, the first being stated
without proof, since the arguments are standard for ordered topological
linear spaces (see [7], [10]).

LEMMA 2. Let W be an order-convex2 subcone of the cone of all positive
linear forms on a vector lattice V. Then the following are equivalent:

(i) W separates the points of V.

(ii) There is a Hausdorff locally convex locally solid topology on V
such that each continuous positive linear form on V is contained in W.

(iii) V+ is closedfor a(V, W - W).

(iv) V+ = {z E V: g(z) ~ O[or all g E W}.

(v) The closure V+ of V+ with respect to a(V, W - W) is a proper
cone, i.e. V+ n - V+ = {O}.

In our context, we are mainly interested in the following two special
cases of Lemma 2:

2 A subset X of an ordered set Y is order-convex iff {y E Y: x ,;;; y ,;;; x' for some x,
X'EX}CX.
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(a) W is the cone of all positive linear forms on V.

(b) V is a topological vector lattice and W is the cone of all continuous
positive linear forms on V (for order-convexity of W see e.g. [6], p. 96, 3.3.4).

LEMMA 3. Let E be a regularly ordered3 topological vector lattice and let
x 7'= 0 be a positive element of Eo. If A is a finite subset of H such that
A () H x 7'= 0 and A () HX 7'= 0, then there exists a sequence (Ln) ofpositive
linear operators from E into itself satisfying limn-<>oo Liy) = y for all yEA
and for each n EN there is ayE flx such that Ln(x) ? y.

Proof Let a := LYEA [ y I and define Ea to be the M-space {z E E: I z I ~
Aa for some AE IR-jJ with order unit norm induced by the order unit a (since
the positive linear forms on E separate points, E is Archimedean, hence the
order unit seminorm is a norm). By Kakutani's representation theorem there is
a compact space Q and a vector lattice isomorphism z~ z from Ea onto a
dense linear sublattice Ea of <ff(Q) such that fi = I. To define L n , fix n E N
and choose a finite set Oltn of open subsets of Q such that (U) UE'PI is an open
covering of Q and y(U) has diameter smaller than lin for all y ~ A and all
UEoll n ·

If <A) is the linear subspace of E generated by A, EA := {z E E: k ~
z ~ k' for some k, k' E <A)} is a vector subspace of Ea containing x. Hence,
we can define the upper <A)-envelope i: Q -+ IR of x (cf. [1]), im =

inf{ym: y E <A), y ? x}. Since i is upper semicontinuous, for each V E Oltn
there is a point ~u in the compact closure U of U in Q such that i(~u) =

sup. i(D). Moreover, by Lemma I, one can find a positive linear functional
iLu on E A satisfying iLu(y) = y(~u) for all yEA and fLu(x) = i(~u). If
E~ is the algebraic dual of EA , fLu is in the (J(~ , EA)-closure of the cone G
of all EA-restrictions of positive linear forms on E. Indeed, suppose not. By
Mazur's theorem, there is a Z E EA such that fLu(Z) < 0 and g(z) ? 0 for all
g E G. But the latter inequality implies Z ? 0 by Lemma 2, since E is regularly
ordered, which yields a contradiction! Hence there is a positive linear form
Wu on E for each UE Oltn satisfying! wu(y) - fLu(y)1 ~ lin for all yEA
and I w u(x) - fLu(x)1 ~ lin. Finally, since Ea is dense in <ff(Q), one can
find a family (bu)uEOIt of non-negative elements in Ea satisfying 1 ~
LUE'PI bu ~ 1 + lin a~d bu = 0 on Q\U (observe that Ea is a linear
sublattice of <ff(Q)!). For each Z E E let now Ln(z) = LUE'PI wu(z)· bu +
p(z) . aln where p is a positive linear form on E such that p(x) >2, the choice
of p being independent of n. Clearly, L n is a positive linear operator of E into

..--..-
itself. To prove the assertion of the lemma, let YEA. Then (LiY))nEf\I

3 I.e. the positive linear forms on E separate the points of E.
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converges uniformly to ji on Q: Indeed, let g E Q be arbitrary. We then
obtain

](L:'('Y) - ji)(OI = I L wu(y) bu(g) + p(y) - jiW\
UE~n n

~ I L wu(y) buW - L ji(g) buWI
UE~n UE~n

f-I L ji(g) buW - ji(OI + I p(y)1
UE~n n

~ L I wu(y) - jiWI bu(O + I ji(g)1 + 1 p(Y)1
UE~~ n n

where '¥I~:={UE'¥In: gE U}=:l{UE'¥In: bu(g) =1= O}. If lijill is the uniform
norm of ji, we conclude:

---- .I(Ln(y) - ji)(g)I ~ L (I wuCv) - fLu(Y)1 + I fLu(Y) - ji(g)i) . bu(g)
UE~~

+ II ji II + I p(y)1
n n

----Hence limn~oo Ln(y) = ji uniformly.
Furthermore, the inverse mapping ([! of z ->- z is continuous, since the

image of the unit ball in Ea is the order interval [-a, a] which is absorbed
by each (solid) zero-neighborhood in F. Consequently, limn_>>:) Liy) = y.

Finally, let n E Nand gE Q be arbitrary. Then the following inequalities
hold:

~. 1 ( 1) 2:): L x(gu) bu(~) - - 1 + - +-
UE'PI

n
n n n

~ -' 1 ( 1) 2= I (sup x(U)) buW - - 1 + - + - ('¥I~ defined as above)
UE':W~ n n n

:): ~(O I bu(~):): &W.
UE~~
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Hence, for each gE Q there is a functionYg E (1) majorizing IX and such that-Yg(g) < Ln(x)(g). This inequality is still valid in a whole neighborhood of g.
Since a finite number of such neighborhoods covers Q, there exists a finite-subset Y C {y E (A): y ~ x} such that inf (Y) < Ln(x) on Q. But Y =

!p(Y) C H x and !p(inf Y) = inf !p(Y) E H x • This completes the proof.

LEMMA 4. Let E be a regularly ordered topological vector lattice, and let
x E E+ \{O} be such that y :::;; x :::;; y' for some y, y' E H. Then there is a net
(L;);E! ofpositive linear operators from E into itself satisfying lim;E! L;( y) == y
for all y E Hand {L;(x): i E I} C Hx + E+ . If the continuous positive linear
forms on E separate the points of E, then the operators L; can be choosen
continuous. Moreover, if H has a countable algebraic basis and the topology
of E is first countable, the net (Li ) can be replaced by a sequence of positive
linear operators (resp. of continuous positive linear operators) on E.

Proof Let ~:= {A C H: A finite, An H x oF 0 and An HX oF 0}.

By Lemma 3, for each A E ~ there is a sequence (L~)nEf\J of positive endo
morphisms on E satisfying

lim LA(y) = Y
n--->-oc n

whenever yEA and

Let 1:= Nil X ~. We define an ordering on I setting «nA)AEil, B) :::;;
«n~)AEil , B') iff nA :::;; n~ (for all A E ~) and Be B'. Obviously, I is upward
directed. For i = «nA)AEil ' B) E I let L i : = L~B .

Since {Li(x): i E I} C Hx + E+ clearly follows from the corresponding
inclusion for the sequences (L~), it remains to prove the first assertion:

Let y E H and let V be a zero-neighborhood in E. For each A E ~ contain
ing y choose a natural number mA such that L~(y) - y E V for all n ~ mA .
If A E ~ does not contain y, define mA : = I. Select a set Ao E ~ satisfying
y E Ao . Then L;(y) - Y E V whenever i ~ «mA)AE5.)' Ao) (i E I). Indeed,
let i = «nA)AE5.) , B) ~ «mA)AEil ' Ao). Since y E Ao C Band nB ~ mB, it
follows that L;(y) - y = L~B(Y) - Y E V.

Suppose now that the continuous positive linear forms on E separate the
points of E; then it is clear from the proof of Lemma 3 that the operators
L~ can be choosen continuous. Hence the net (L i ) of positive endomorphisms
on E defined above consists of continuous operators.

Finally, suppose that (Yn)nEf\J is a basis of H. By Lemma 3, for each mEN
there is a sequence (L';:)nEf\J of positive endomorphisms on E satisfying

lim Lm(y;) = y; for allj = 1,... , m and {L;:'(x) : n EN} C fIx + L
ll-i X;- n
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Let d be a pseudo-metric on E generating the topology of E. For each n EN
there is a natural number k n such that

d(L~ (Yi), Yi) < l for all i = 1,... , n.
n n

If we set L n := L~ (n EN), then obviously limn -.oo Ln(Yi) = Yi for all
i EN. Hence limn -.oo

n

Ln(y) = Y for all Y E H. {Ln(x): n E N} C Hx + E+
again follows from the corresponding inclusion for the operators Vr;;.

Lemma 4 now yields the following converse of Theorem 1:

THEOREM 2. Let E be regularly ordered. Then the following statements are
equivalent for x E Eo:

(i) x is (H, S)-affine

(ii) x E Hf'.

Moreover, ifE is a locally convex vector lattice and S is continuous, then the
list of equivalent statements can be extended by

(iii) x E H~c, where &c denotes the class of all nets of continuous
positive linear operators from Eo into F.

Proof By Theorem 1 we have only to prove the implications (ii) => (i)
and (iii) => (i). If E is endowed with the initial topology with respect to S, then
E will become a topological vector lattice such that S is continuous. The rest
of the proof is carried out in Theorem 1.2 of [5].

Let ;Y', &: denote the subset of all sequences in &, &c , respectively. An
example of Scheffold [11] shows that the inclusions H~ C Ht, H~: cannot
be replaced by equalities in general. Using an obvious modification of a proof
presented in [5] based on Lemma 4, we have equality provided that the topo
logy ofF is first countable, H has a countable basis and E is regularly ordered
(respectively E is a locally convex vector lattice and S is continuous). More
over, if E = Eo = {x E E: Y ~ x :s; y' for some Y, Y' E H} is a dense linear
sublattice of'6'(X) endowed with the topology oflocally uniform convergence,
X locally compact, countable at infinity, H is separable and S is continuous,
then we also have the equality

To prepare the proof we need the following lemma

LEMMA 5. Let X be a locally compact a-compact space and let Eo be a
dense vector sublattice of '6'(X) endowed with the topology of uniform conver
gence on all compact subsets of X. Furthermore, suppose that H is separable
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and HI =f. 0 =f. HI for each f E Eo. Then, given a positive function f E Eo ,
there exists a sequence (Ln) ofpositive linear operators of Eo into itself satis
fying

(i) limn~oo Ln(h) = hfor all h E H,

(ii) for each compact subset K C X there is a natural number no such
that infn--.n Ln(f)(y);;?: I(y) := infhEH hey) for all y E K,

... 0 f

(iii) if all positive linear forms on Eo are continuous, then each L n is
continuous.

Proof Since Eo is a linear lattice, we can assume that E = Eo . Choose a
sequence (Kn) of compact subsets of X such that Kn C Kn+1 (= interior of
Kn+I) for all n E Nand UnEi'oI Kn = X. Let n E N and x E X be arbitrary.
Then there is a (uniquely determined) natural number m such that x E Km\

Km - 1 (define K o : = 0). Hence the set

where (h j ) is a dense sequence in H, is an open relatively compact neighbor
hood of x.

Since (V:)"'EK" is an open covering of Kn , there is a finite subset Sn C Kn
such that U"'ES V:::> Kn • Moreover, we can find a family (a~)"'ES of
positive functio~s in E = Eo with the following properties (observe that Eo
is a dense sublattice of ~(X)0:

1
I :::;; L a;(y) :::;; I + - for all y E Kn ,

"'ES" n

For each x E Sn choose a point y; E V: and an H-representing (cf. I)

functional w~ for y; such that I(y~) = sup I(V;) and w;(f) = I(y~).
Let L n: E --- E be given by Ln(g) = L"'ES w~(g) a~ (g E E). Since L n is
evidently continuous, if all positive linear "forms on E are continuous, it
remains to show (i) and (ii): Thus, let hE H and consider a compact subset
K of X. Define ex:= SUPlIEK Ih(Y)1 and, for each E > 0 (E E ~), choose
no, n1 E N with the following properties:

K no ::> K (this is possible, since (K",) covers K and (Kn ) is increasing),
noE ;;?: 4 + ex,
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Then for each natural number n ?' max(no , n1) and each y E K we obtain:

I(Ln(h) - h)(y)1 = I w~(h) a~(y) - h(y)
XESn

~ I I h(y:) - h(Y)1 a~(y) + I L a~(y) - 111 h(y)j
XESn XESn

~ L I h(y;) - h(y)1 a;(y) + : .
XESn

Furthermore, the following estimate holds for each x E Sn:

If x ¢= K n , then U; (\ K n = 0, consequently a~(y) = O. Thus, for
00_

a:(y) =1= 0, we must have x E K no and y: E U: C Kno+l' From this we
conclude: a:(y)1 h(y:) - h(y)1 ~ (l/no+ (I hn1(y:) - hn/y)1) a~(y) ~

(l/no+ I hn (y~) - hn (x) I + I hn (x) - hn (y)1) a:(y) ~ 2/no a~(y) by the
1 1 1 1

definition of U~ . But this yields:

I(Ln(h) - h)(y)1 ~ 2. . (1 + ~) +~ ~ 4+~ ~ E which proves (i).
no n n no

(ii) Let K again be an arbitrary compact subset of X and choose
no E N such that K n :J K. Then for each n ?' no (n E N) and each y E K
we obtain: Ln(h(y) = LXES w~(f) a:(y) = LXES J(y~) a~(y) =

LXES' J(y~) a~(y) where S~: = 1x E Sn: Y E U~}, he;ce Ln(f)(y)?,

LXES:J(y) a:(y) ?' J(y), since J(y~) = sup 1<u;). This completes the
proof.

THEOREM 3. In addition to the assumptions of Lemma 5 suppose that the
vector lattice homomorphism S: Eo ->- F is continuous. Then the following
are equivalent for each function f E Eo:

(i) f is (H, S)-affine.

(ii) fERfo.

Moreover, if all positive linear forms on Eo are continuous, we can adjoin
the further equivalent condition

(iii) fERf;.
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Proof Following the proof of Theorem 2.1 in [5] it suffices to show that,
for each positive function f E Eo , (ii) implies limgEB> S(g) = S(f). Thus, let
f E Eo be positive and such that (ii) holds. If (Ln) is a sequence of positive
linear operators on Eo satisfying the conditions (i), (ii) of Lemma 5, we
define the sequence (Tn) of positive linear operators from Eo into F by
Tn = So L n (n EN).

The continuity of S yields limn_>oo Tn(h) = S(h) for all h E H. Hence it
follows from the assumption on f that limn~oo Tn(f) = S(f). Let 'ftF(O)
be the system of zero-neighborhoods in F. The proof will be complete, if we
can show that for each solid U E 'ftF(O) there is a function g E Hf such that
S(g) - S(f) E U. Indeed, this implies limgEb

f
S(g) = S(f), since Hf is

downward directed and U is solid.
Thus, let V E 'ftF(O) be solid and choose V' E 'ftF(O) such that V f + V f C

U. Since limn-?oo Tn(f) = S(f), there is an no EN satisfying Tn(f) - S(f) E V'
for all n ?o no (n EN). Moreover, from the continuity of S we derive the exis
tence of a compact K C X and a positive real number 0 such that Ig I < 0 on
K implies S(g) E U f whenever gEE. By Lemma 5 infn;:;,n Ln(f)(y) ?o !(y) on

fT ' 1
Kfor some n1 EN. Since inf n f = j, it follows that infgeb(g - Ln(f))+(y) = 0

/

for all y E K and all n ?o nl (n EN). By Dini's theorem and the compactness
of K there exists a function g E Hf satisfying [(g - L;(f))+(y) I < 0 for all
y E K where j := max(no , n1). Hence S((g - L;(f))+) E V f and consequently

S(f) ~ S(g) ~ S(L;(f)) + S((g - L;(f))+)

= T;(f) + S((g - L;(f))+) E S(f) + V f + U' E S(f) + U.
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